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Abstract
We prove that when the bag surface is allowed to move radially, the equations
of motion derived from the MIT bag Lagrangian with massless quarks and
a spherical boundary admit only one solution, which corresponds to a bag
expanding at the speed of light. This result implies that some new physics
ingredients, such as coupling to meson fields, are needed to make the dynamical
bag a consistent model of hadrons.

PACS number: 12.39.Ba

The MIT bag model, in which hadrons are modelled by the states formed with free quarks
confined inside an impenetrable bag, has been rather successful in reproducing static ground
state properties of hadrons [1]. Because of its simplicity, especially its spherically symmetric
version, the model has been used extensively in the discussion of various phenomena ranging
from strange stars [2] to ultra-relativistic heavy-ion collisions [3], even though these often
involve situations of high density/temperature, where the applicability of the model is doubtful.
Many attempts have also been made to augment the basic MIT bag model with new ingredients,
such as the partial restoration of chiral symmetry via meson coupling [4] and inclusion of
perturbative gluon exchanges among quarks [5]. However, in almost all discussion, the hadron
bag is treated as a static boundary between the perturbative and nonperturbative vacua, and
excitations of the hadron are associated with the quark degree of freedom. The few notable
exceptions [6–13], which allowed for the possibility of a dynamical bag boundary, focused
mainly on reproducing the correct phenomenological parity order of the low-lying states of
the nucleon, but several approximations and modifications to the theory had to be employed.
Rebbi’s idea [6] was to perform an approximate quantization of the small oscillations about the
lowest-energy, spherically symmetric solution of the MIT bag model. In order to implement
it he used the Dirac method for the quantization of systems with constraints. Hasenfratz
and Kuti [7] bypassed the difficulties of a constrained system by adding a surface tension
to the bag and hence providing a kinetic term for the bag’s surface. They then quantized
the bag’s motion using the adiabatic approximation. In the same spirit the authors of [8–10]
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introduced an effective surface tension and applied it to a model which includes a quark–
pion interaction term at the boundary. Fiebig [11] instead used a quite different approach; he
obtained approximate classical solutions for the bag’s radius and the conjugate momentum and
quantized the system with the Bohr–Sommerfeld quantization prescription. Guichon [12] and
Zhang [13] both derived approximate classical solutions for the fields in a non-static cavity,
using the small oscillation and adiabatic approximations respectively. They then quantized the
solutions.

Our approach is complementary to those introduced above. All these works showed
unequivocally that taking into account the surface motion can resolve the problem that in the
static model, the P-state energies are too low and the first excited S states are too high. This
appears to be a general characteristic of bag models, regardless of the specific features of each
model. It is necessary at this point to study the exact dynamical solutions of a particular model.
In particular the question of whether a dynamical bag model can consistently describe hadrons
was not addressed. This is particularly evident from the fact that all the previous works on the
non-static MIT bag bypassed the problem of exactly satisfying the linear boundary condition.
The motivation of the present work is to address these issues. In this paper we discuss,
analytically and without approximations, the consequences of allowing the bag boundary to
move.

We consider the basic MIT bag model with free fermions inside a spherically symmetric but
non-static bag. We shall show that the equations of motion require that the fermion fieldψ(t, r)
vanishes at the bag boundary r = R(t). Hence our problem reduces to a quite general one:
that of the Dirac equation in a spherical dynamical cavity with ψ(t, R(t)) = 0. Furthermore,
we shall show that for massless fermions the only solution is that of a bag expanding with
the speed of light. From this unexpected result, which evidently has no phenomenological
application, we infer that some new physics ingredients, such as an interaction term with other
fields, have to be introduced to make the more general dynamical bag model consistent and
physical [14]. In the case of massive quarks we could not find a solution and we conjecture
that in fact it does not exist.

The MIT bag Lagrangian density [1] is written as

L =
[

i

2

(
ψ̄γ µ∂µψ − ∂µψ̄γ µψ

) − B
]
θv(x)− 1

2
ψ̄ψ�s (1)

where θv(x) is unity inside the bag and zero outside and

∂θv

∂xµ
= nµ�s (2)

�s being the surface delta-function and nµ the normal vector to the bag. From the
Euler–Lagrange equation of motion

∂L
∂ψ̄

− ∂µ ∂L
∂(∂µψ̄)

= 0 (3)

we obtain

iγ µ∂µψ = 0 inside the bag (4)

iγ µnµψ = ψ on the surface. (5)

This last equation may be considered as the boundary condition for equation (4). Energy–
momentum conservation implies a further constraint at the boundary [1, 15]:

Bnν = 1
2 [∂ν(ψ̄ψ)]r=R. (6)
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We now look for a spherically symmetric solution of the above equations. In this case we
have θv = θ(R − r), �s = δ(R − r) and

nµ = (Ṙ,−r̂). (7)

We first find an explicit expression for the boundary condition. Equation (5) becomes

iṘγ 0ψ − i �γ · r̂ψ = ψ (8)

with

�γ · r̂ =
(

0 �σ · r̂
−�σ · r̂ 0

)
. (9)

We can write the spinor ψ as [15, 16]

ψ =
(
φ

χ

)
=

(
g(r, t)Yj3

j l

if (r, t)Yj3
j l′

)
(10)

where Yj3
j l contains the spin and angular parts of the wavefunction. Observing that (�σ · r̂)Yj3

j l =
−Yj3

j l′ [15], we can write equation (8) as

iṘg(t, R)− f (t, R) = g(t, R)
Ṙf (t, R)− ig(t, R) = if (t, R).

(11)

If Ṙ = 0 we have the familiar boundary condition for the static MIT bag, i.e. g(t, R) =
−f (t, R), which also corresponds to that in the Bogolioubov model [16], and the analytical
solutions are well known. However it is easy to verify that, if Ṙ �= 0, then equations (11) can
be satisfied only if

g(t, R) = f (t, R) = 0. (12)

Notice from equation (6) that this implies B = 0, and in this way energy–momentum is
conserved regardless of the motion of the bag. This also means that equation (6) does not
provide information about Ṙ.

Performing the change of variable y = rR0/R(t) one could recast the problem into a
static boundary one. In this framework the motion of the bag’s surface is treated as a time-
dependent perturbation to the static Hamiltonian and one looks for the solutions by means of a
time-dependent expansion in terms of the static cavity eigenfunctions, exp{−iEnt}ψn(y) [18].
However in our case this approach cannot provide us the solution. In fact, writing the
wavefunction ψf for the fixed boundary problem as

ψf =
∞∑
n=0

cn(t)e
−iEntψn(y) (13)

we can in general work out cn(t), for example by perturbation theory, but it is well known that
the static eigenfunctions, exp{−iEnt}ψn(y), of the Dirac field inside a spherical cavity are non-
zero at the boundary [15], and we have no way to impose the boundary condition equation (12)
on expression (13). In other words, although at the initial time we can always choose a suitable
combination of ψn(y)which is zero at y = R0, at subsequent times ψf (t, R0), as expressed in
equation (13), will in general be different from zero. We hence need to proceed in a different
way.

Substituting expression (10) for ψ in equation (4), with l = 0 and l′ = 1 in order to have
spherical symmetry, we obtain two coupled equations:

−i
∂g

∂t
= ∂f

∂r
+

2

r
f (14)

i
∂f

∂t
= ∂g

∂r
. (15)
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Integrating equation (15) with respect to time and substituting the expression for f (t, r) in
equation (14) we have

f = A(r)− i
∫

dt
∂g

∂r
(16)

−i
∂g

∂t
= −i

∫
dt

[
∂2g

∂r2
+

2

r

∂g

∂r

]
+

dA (r)

dr
+

2

r
A(r) (17)

where A(r) is a time-independent function to be determined. Equation (17) is the spherical
wave equation in integro-differential form, whose general solution can be written in the form

g(t, r) = 1

r
[G(t − r)−G(t + r)] + Ct +D (18)

with C and D two constants. In principle, a term of the form α/r is allowed in equation (18).
However, it makes the wavefunction not normalizable and unphysical. We have also checked
that this term does not affect at all our proof. We therefore set α = 0.

Inserting the above expression in equation (17) yields an equation for A(r):

dA

dr
= −2

r
A− iC (19)

whose solution is

A(r) = − i

3
Cr. (20)

Hence we can write an explicit expression for f as

f (t, r) = i

r

{
G(t − r) +G(t + r) +

1

r
[Q(t − r)−Q(t + r)]

}
− i
C

3
r (21)

with Q′(z) = G(z). Now using the boundary conditions equation (12) we can derive the
relations amongG(t −R),G(t +R), R(t) and Ṙ(t). Equating g(t, R) and f (t, R) to zero we
have

g(t, R) = 1

R
[G(t − R)−G(t + R)] + Ct +D = 0 (22)

f (t, R) = i

R

{
G(t − R) +G(t + R) +

1

R
[Q(t − R)−Q(t + R)]

}
− i
C

3
R = 0. (23)

Taking the time derivative of both equations we obtain

d

dt
g(t, R) = 1

R
{(1 − Ṙ)G′(t − R)− (1 + Ṙ)G′(t + R)}

− Ṙ

R2
[G(t − R)−G(t + R)] + C = 0 (24)

and

d

dt
f (t, R) = − Ṙ

R
f (t, R)− i

R

{
2

3
CRṘ − (1 − Ṙ)G′(t − R)− (1 + Ṙ)G′(t + R)

+
Ṙ

R2
[Q(t − R)−Q(t + R)]

+
1

R

[
(Ṙ − 1)G(t − R) + (Ṙ + 1)G(t + R)

] }
= 0. (25)

From the last two equations, and by means of equations (22) and (23), we can find

(1 − Ṙ)G′(t − R)− (1 + Ṙ)G′(t + R) + Ṙ(Ct +D) + CR = 0 (26)
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and

−(1 − Ṙ)G′(t − R)− (1 + Ṙ)G′(t + R) + Ct +D + CRṘ = 0. (27)

These two equations contain all the information we need to solve the problem, i.e. to find Ṙ(t)
for any t > t0 andG(z) for any z > t0 +R(t0). In fact, using the same argument as in [17], as
long as |Ṙ| � 1, at each time t � t0 G

′(t − R) is known and we have two equations for the
two unknowns G(t + R) and Ṙ(t). By summing and subtracting equations (26) and (27) we
can decouple Ṙ and G′(t + R) as follows:

(1 + Ṙ)[−2G′(t + R) + (Ct +D + CR)] = 0 (28)

(1 − Ṙ)[2G′(t − R)− (Ct +D − CR)] = 0. (29)

It is finally evident that equation (29) implies

Ṙ(t) = 1 (30)

and from equation (28) we have

G′ (t + R(t)) = 1
2 [Ct +D + CR(t)] . (31)

Notice that Ṙ = −1 is not allowed because equation (29) would not be satisfied. Since
expressions (18) and (21) represent the general solution of the problem, the above result
excludes the possibility of any other solution. It is also important to note that, with Ṙ = 1,
t − R(t) = t0 − R(t0).

Now, knowing that R(t) = R0 + t − t0 and defining z ≡ t + R(t), we have

G′(z) = 1
2 (Cz +D) z � t0 + R0. (32)

At this point, in order to have a clear understanding of the solution, we set C = D = 0. In
fact, the two constants, with the boundary conditions given by equations (22) and (23), are
physically irrelevant. We obtain

G(z) = G(z0) = G(t0 − R0) z � t0 + R0 = z0 (33)

Q(z) = G(z0)(z− z0) +Q(z0) z � t0 + R0 = z0. (34)

Given ψ(t0, r), which for example is different from zero at some r , then ψ(t, r) will go to
zero as t → t0 + R0 + r , and so we shall have

ψ(t, r) = 0 r � t − t0 − R0 r � t − t0 + R0. (35)

Therefore, after a time t = R0 + t0, the solution represents an expanding spherical shell
with internal radius Rin = t − t0 − R0 and external radius Rout = t − t0 + R0. The solution
for t < t0 can be found analogously, evolving backward in time. In this case equations (28)
and (29) imply Ṙ = −1 andG′(t−R)would be the unknown. Obviously the solution becomes
singular as R(t) = 0.

This unexpected solution of the massless Dirac equation in a spherical dynamical cavity
is evidently due to the boundary conditions equation (12). However, as far as one considers
the Dirac field completely confined in a cavity, any other boundary condition would violate
unitarity, as can be checked easily by taking the time derivative of the norm of the field.

From a physical point of view the problem lies in the fact that the MIT bag model sets
the field to zero outside the bag already in the Lagrangian. In the Bogolioubov model with a
finite square-well potential, there is a non-zero field also outside the well. If the wall moves
inward, the field gains enough energy so that parts of it can go out of the well. The higher the
potential the more energy is transferred to the field during a compression, mainly because the
Dirac field at the wall does not approach zero as the potential goes to infinity.
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The MIT bag model overcomes this problem by means of the boundary condition
(equation (12)), which sets the field to zero at the moving boundary. The drawback, as we have
seen, is the absence of a baglike solution for a dynamical boundary. In relation to our results it
is particularly interesting to note that Fiebig’s calculations [11] imply that the MIT bag model
does not allow moving boundary solutions if the initial state is the lowest static solution. Not
using exactly the linear boundary condition equation (8), Fiebig did obtain non-static baglike
solutions.

We also asked ourselves whether giving a mass to the fermions would alleviate the problem.
The static bag wavefunctions, like their massless counterparts, are not equal to zero at the
boundary. A moving boundary, however, requires also in the massive case the boundary
conditions equation (12) and hence, as mentioned before, the solution cannot be written as
a time-dependent combination of static cavity eigenfunctions. We could not find the general
solution in this case, and we conjecture that no solution exists for massive fermions. Our
conjecture is based on the fact that equation (12) implies a delicate cancellation of all the
Fourier components of the wavefunction. In order to maintain this zero boundary condition
at all times, all the Fourier components of the wave should travel at the same speed as that of
the moving wall. This is indeed possible in the massless case, if the bag wall expands with the
speed of light. For massive fermions however, each Fourier component travels at a different
speed, and it may not be possible to satisfy the boundary condition equation (12) at all times.

In this paper we have considered specifically the MIT bag model, which is singular in the
sense that no kinetic energy term is associated with the motion of the boundary. However, it is
straightforward to see that our result applies without modification to a non-singular model such
as the ‘Budapest’ bag [7], which includes a surface tension besides the volume energy term.
This is because the presence of a boundary kinetic term does not modify the linear boundary
condition equation (5), which is responsible for the unphysical solution. For the same reason
including free gluons inside the bag, i.e. with no quark–gluon interaction term, would not solve
the problem. Analogously to the MIT bag, energy conservation would require the ‘Budapest’
bag to have zero surface tension, besides B = 0.

In summary, we have shown that the equations of motion derived from the dynamical
MIT bag Lagrangian with massless quarks and a spherical boundary admit only one solution
corresponding to a bag expanding at the speed of light. This result raises the question of
whether the quantization of the theory can provide stable solutions. We infer that a consistent
dynamical bag model for absolutely confined fermions must include an interaction term with
some other fields at least at the boundary of the domain. For example, in a work to be
published elsewhere [14] we shall show that a dynamical chiral bag model [4] does admit
physically meaningful solutions.
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